Flow Matching Dec 1, 2024 In summary, flow matching is a generative modeling technique that provides an elegant way to transform data distributions. import numpy as np import torch import torch.nn as nn import torch.optim as optim class FlowMatchingModel: def __init__(self, input_dim, hidden_dim): """ Initialize Flow Matching Model Args: input_dim (int): Dimension of input data hidden_dim (int): Dimension of hidden layers """ self.base_distribution = None # Initial data distribution self.target_distribution = None # Target data distribution # Neural network to learn the flow self.flow_network = nn.Sequential( nn.Linear(input_dim + 1, hidden_dim), # +1 for time conditioning nn.ReLU(), nn.Linear(hidden_dim, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, input_dim) ) self.optimizer = optim.Adam(self.flow_network.parameters()) def sample_base_distribution(self, num_samples): """ Sample from the base (initial) distribution Args: num_samples (int): Number of samples to generate Returns: torch.Tensor: Samples from base distribution """ # Example: Gaussian distribution return torch.randn(num_samples, self.input_dim) def probability_flow_ode(self, x, t): """ Compute the probability flow ODE Args: x (torch.Tensor): Current data point t (torch.Tensor): Time variable Returns: torch.Tensor: Flow direction """ # Combine input and time as network input network_input = torch.cat([x, t], dim=1) return self.flow_network(network_input) def conditional_vector_field(self, x0, x1, t): """ Compute the conditional vector field Args: x0 (torch.Tensor): Initial data point x1 (torch.Tensor): Target data point t (torch.Tensor): Time variable Returns: torch.Tensor: Conditional vector field """ # Interpolate between source and target x_t = x0 * (1 - t) + x1 * t vector_field = x1 - x0 return vector_field def loss_function(self, x0, x1): """ Compute the flow matching loss Args: x0 (torch.Tensor): Initial data points x1 (torch.Tensor): Target data points Returns: torch.Tensor: Training loss """ batch_size = x0.shape[0] t = torch.rand(batch_size, 1) # Random time sampling # Compute vector field true_vector_field = self.conditional_vector_field(x0, x1, t) predicted_vector_field = self.probability_flow_ode(x0, t) # Compute MSE loss between true and predicted vector fields loss = torch.mean((predicted_vector_field - true_vector_field) ** 2) return loss def train(self, dataloader, epochs): """ Train the Flow Matching Model Args: dataloader (torch.utils.data.DataLoader): Training data epochs (int): Number of training epochs """ for epoch in range(epochs): for batch_x0, batch_x1 in dataloader: self.optimizer.zero_grad() loss = self.loss_function(batch_x0, batch_x1) loss.backward() self.optimizer.step() print(f"Epoch {epoch+1}/{epochs}, Loss: {loss.item()}") def generate_samples(self, num_samples): """ Generate new samples using the learned flow Args: num_samples (int): Number of samples to generate Returns: torch.Tensor: Generated samples """ # Start from base distribution and follow the learned flow x0 = self.sample_base_distribution(num_samples) # Perform sampling through ODE solving x_generated = x0 # Starting point time_steps = torch.linspace(0, 1, 100) for t in time_steps[1:]: vector_field = self.probability_flow_ode(x_generated, t) x_generated += vector_field * (time_steps[1] - time_steps[0]) return x_generated def main(): # Hyperparameters input_dim = 10 hidden_dim = 64 num_epochs = 100 flow_matching = FlowMatchingModel(input_dim, hidden_dim) flow_matching.train(dataloader, num_epochs) generated_samples = flow_matching.generate_samples(1000)